References
Aan het Rot, M., Hogenelst, K., & Schoevers, R. A. (2012). Mood disorders in everyday life: A systematic review of experience sampling and ecological momentary assessment studies. Clinical Psychology Review, 32(6), 510–523. https://doi.org/10.1016/j.cpr.2012.05.007
Allport, G. W. (1937). Personality: A psychological interpretation. Oxford, England: Holt; Company.
Asselbergs, J., Ruwaard, J., Ejdys, M., Schrader, N., Sijbrandij, M., & Riper, H. (2016). Mobile phone-based unobtrusive ecological momentary assessment of day-to-day mood: An explorative study. Journal of Medical Internet Research, 18(3), e72. https://doi.org/10.2196/jmir.5505
Aung, M. H., Matthews, M., & Choudhury, T. (2017). Sensing behavioral symptoms of mental health and delivering personalized interventions using mobile technologies. Depression and Anxiety, 34(7), 603–609. https://doi.org/10.1002/da.22646
Bai, J., Di, C., Xiao, L., Evenson, K. R., LaCroix, A. Z., Crainiceanu, C. M., & Buchner, D. M. (2016). An activity index for raw accelerometry data and its comparison with other activity metrics. PLoS ONE. https://doi.org/10.1371/journal.pone.0160644
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting inear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Beedie, C., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition & Emotion, 19(6), 847–878. https://doi.org/10.1080/02699930541000057
Bennik, E. C. (2015). Every dark cloud has a colored lining: The relation between positive and negative affect and reactivity to positive and negative events. Groningen: University of Groningen.
Blaauw, F. J., Schenk, H. M., Jeronimus, B. F., Van der Krieke, L., De Jonge, P., Aiello, M., & Emerencia, A. C. (2016). Let’s get Physiqual – An intuitive and generic method to combine sensor technology with ecological momentary assessments. Journal of Biomedical Informatics. https://doi.org/10.1016/j.jbi.2016.08.001
Bolger, N., & Laurenceau, J.-p. (2013). Introduction to intensive methods. In Intensive longitudinal methods: An introduction to diary and experience sampling research. New York: Guilford Press.
Booij, S. (2015). Dynamics of the human stress system in depression: A combined population- and person-based approach to assess long-term changes and daily life fluctuations. Groningen: University of Groningen.
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry. https://doi.org/10.1002/wps.20375
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91–121. https://doi.org/doi:10.1146/annurev-clinpsy-050212-185608
Bowen, R., Baetz, M., Hawkes, J., & Bowen, A. (2006). Mood variability in anxiety disorders. Journal of Affective Disorders, 91(2-3), 165–170. https://doi.org/10.1016/j.jad.2005.12.050
Bringmann, L. F., Lemmens, L. H., Huibers, M. J., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological Medicine. https://doi.org/10.1017/S0033291714001809
Burton, C., McKinstry, B., Tătar, A. S., Serrano-Blanco, A., Pagliari, C., & Wolters, M. (2013). Activity monitoring in patients with depression: A systematic review. Journal of Affective Disorders, 145(1), 21–28. https://doi.org/10.1016/j.jad.2012.07.001
Buysse, D. J., Thompson, W., Scott, J., Franzen, P. L., Germain, A., Hall, M., … Kupfer, D. J. (2007). Daytime symptoms in primary insomnia: A prospective analysis using ecological momentary assessment. Sleep Medicine, 8(3), 198–208. https://doi.org/10.1016/j.sleep.2006.10.006
CCMO. (2018). Research with a medical device. Retrieved from http://www.ccmo.nl/en/research-with-a-medical-device
Choi, L., Beck, C., Liu, Z., Matthews, C. E., & Buchowski, M. S. (2018). PhysicalActivity: Process accelerometer data for physical activity measurement. Retrieved from https://CRAN.R-project.org/package=PhysicalActivity
Collip, D., Oorschot, M., Thewissen, V., Van Os, J., Bentall, R., & Myin-Germeys, I. (2011). Social world interactions: How company connects to paranoia. Psychological Medicine, 41(5), 911–921. https://doi.org/10.1017/S0033291710001558
Conner, T. S., & Feldman Barrett, L. (2012). Trends in ambulatory self-report: The role of momentary experience in psychosomatic medicine. Psychosomatic Medicine, 74(4), 327–337. https://doi.org/10.1097/PSY.0b013e3182546f18
Conner, T. S., & Lehman, B. J. (2012). Getting started: Launching a study in daily life. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life. (pp. 89–107). New York, NY, US.: Guilford Press.
Conner, T. S., Tennen, H., Fleeson, W., & Barrett, L. F. (2009). Experience sampling methods: A modern idiographic approach to personality research. Social and Personality Psychology Compass, 3(3), 292–313. https://doi.org/10.1111/j.1751-9004.2009.00170.x]
Cornet, V. P., & Holden, R. J. (2018). Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics, 17(1), 120–132. https://doi.org/10.1016/j.jbi.2017.12.008
Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., & Bolger, N. (2006). A procedure for evaluating sensitivity to within-person change: Can mood measures in diary studies detect change reliably? Personality and Social Psychology Bulletin, 32(7), 917–929. https://doi.org/10.1177/0146167206287721
Csikszentmihalyi, M., & Larson, R. (2014). Validity and reliability of the experience-sampling method. In Flow and the foundations of positive psychology: The collected works of mihaly csikszentmihalyi (pp. 35–54). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9088-8_3
Da silva, I. C., Van Hees, V. T., Ramires, V. V., Knuth, A. G., Bielemann, R. M., Ekelund, U., … Hallal, P. C. (2014). Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. International Journal of Epidemiology. https://doi.org/10.1093/ije/dyu203
Dakos, V., Scheffer, M., Van Nes, E. H., Brovkin, V., Petoukhov, V., & Held, H. (2008). Slowing down as an early warning signal for abrupt climate change. TL - 105. Proceedings of the National Academy of Sciences of the United States of America, 105 VN -(38), 14308–14312. https://doi.org/10.1073/pnas.0802430105
De Geus, E., & Van Doornen, L. (1996). Ambulatory assessment of parasympathetic/sympathetic balance by impedance cardiography. In Ambulatory assessment. computer assisted psychological and psychophysiological methods in monitoring and field studies (pp. 141–164). Hogrefe & Huber.
De Geus, E., Willemsen, G. H., Klaver, C. H., & Van Doornen, L. J. (1995). Ambulatory measurement of respiratory sinus arrhythmia and respiration rate. Biological Psychology. https://doi.org/10.1016/0301-0511(95)05137-6
Derogatis, L. R. (1994). Symptom Checklist-90-R (SCL-90-R): Administration, scoring, and procedures manual. Minneapolis, MN: NCS Pearson.
Desmet, P. M. A., Vastenburg, M. H., & Romero, N. (2016). Mood measurement with Pick-A-Mood: Review of current methods and design of a pictorial self-report scale. Journal of Design Research, 14(3), 241–279. https://doi.org/10.13140/RG.2.1.3894.9365
Dogan, E., Sander, C., Wagner, X., Hegerl, U., & Kohls, E. (2017). Smartphone-based monitoring of objective and subjective data in affective disorders: Where are we and where are we going? Systematic review. Journal of Medical Internet Research, 19(7). https://doi.org/10.2196/jmir.7006
Doherty, A. (2018). Circadian rhythms and mental health: wearable sensing at scale. The Lancet Psychiatry. https://doi.org/10.1016/S2215-0366(18)30172-X
Dubad, M., Winsper, C., Meyer, C., Livanou, M., & Marwaha, S. (2018). A systematic review of the psychometric properties, usability and clinical impacts of mobile mood-monitoring applications in young people. Psychological Medicine, 48(2), 208–228. https://doi.org/10.1017/S0033291717001659
Dunton, G. F. (2017). Ecological momentary assessment in physical activity research. Exercise and Sport Sciences Reviews, 45(1), 48–54. https://doi.org/10.1249/JES.0000000000000092
Ebner-Priemer, U. W., & Trull, T. J. (2009). Ecological momentary assessment of mood disorders and mood dysregulation. Psychological Assessment, 21(4), 463–475. https://doi.org/10.1037/a0017075
Ekker, A., & van Rest, B. (2013). Medische apps, is certificeren nodig? In 7 stappen naar een CE-markering voor uw app. Den Haag: Nictiz. Retrieved from https://www.nictiz.nl/wp-content/uploads/2013/05/13005-Whitepaper-medische-apps.pdf
Ellis-Davies, K., Sakkalou, E., Fowler, N. C., Hilbrink, E. E., & Gattis, M. (2012). CUE: The continuous unified electronic diary method. Behavior Research Methods, 44(4), 1063–1078. https://doi.org/10.3758/s13428-012-0205-1
Emerencia, A. C. (2018). AutovarCore: Automated vector autoregression models and networks. Retrieved from https://CRAN.R-project.org/package=autovarCore
Emerencia, A. C., Van der Krieke, L., Bos, E. H., De Jonge, P., Petkov, N., & Aiello, M. (2016). Automating vector autoregression on electronic patient diary data. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2015.2402280
Engel, S. G., Crosby, R. D., Thomas, G., Bond, D., Lavender, J. M., Mason, T., … Wonderlich, S. A. (2016). Ecological momentary assessment in eating disorder and obesity research: A review of the recent literature. https://doi.org/10.1007/s11920-016-0672-7
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18. https://doi.org/10.18637/jss.v048.i04
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. https://doi.org/10.1186/s12966-015-0314-1
Fang, Z., Langford, J., & Sweetland, C. (2018). GENEAread: Read GENEA binary files. Retrieved from https://CRAN.R-project.org/package=GENEAread
Feehan, L. M., Geldman, J., Sayre, E. C., Park, C., Ezzat, A. M., Yoo, J. Y., … Li, L. C. (2018). Accuracy of fitbit devices: Systematic review and narrative syntheses of quantitative data. Journal of Medical Internet Research. https://doi.org/10.2196/10527
Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage Publications Ltd.
Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R (1st ed.). Paperback; SAGE Publications Ltd.
Frank, E., Swartz, H. A., & Boland, E. (2007). Interpersonal and social rhythm therapy: An intervention addressing rhythm dysregulation in bipolar disorder. Dialogues in Clinical Neuroscience. https://doi.org/10.1002/jclp.20371
Frank, E., Swartz, H. A., & Kupfer, D. J. (2000). Interpersonal and social rhythm therapy: Managing the chaos of bipolar disorder. Biological Psychiatry. https://doi.org/10.1016/S0006-3223(00)00969-0
Gandrud, C. (2015). Reproducible research with R and RStudio. Boca Raton: CRC Press / Taylor; Francis Group.
Goërtz, Y. M. J., Looijmans, M., Prins, J. B., Janssen, D. J. A., Thong, M. S. Y., Peters, J. B., … Spruit, M. A. (2018). Fatigue in patients with chronic obstructive pulmonary disease: Protocol of the Dutch multicentre, longitudinal, observational FAntasTIGUE study. BMJ Open, 8(4), e021745. https://doi.org/10.1136/bmjopen-2018-021745
Goldfeld, K. (2018). Simstudy: Simulation of study data. Retrieved from https://CRAN.R-project.org/package=simstudy
Gomersall, S. R., Ng, N., Burton, N. W., Pavey, T. G., & Gilson. (2016). Estimating physical activity and sedentary behavior in a free-living context: A pragmatic comparison of consumer-based activity trackers and actigraph accelerometry. Journal of Medical Internet Research. https://doi.org/10.2196/jmir.5531
Green, P., & MacLeod, C. J. (2016). Simr: An R package for power analysis of generalised linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40(3), 1–25. Retrieved from http://www.jstatsoft.org/v40/i03/
Groot, P. C. (2010). Patients can diagnose too: How continuous self-assessment aids diagnosis of, and recovery from, depression. Journal of Mental Health, 19(4), 352–362. https://doi.org/10.3109/09638237.2010.494188
Haedt-Matt, A. A., & Keel, P. K. (2011). Hunger and binge eating: A meta-analysis of studies using ecological momentary assessment. International Journal of Eating Disorders, 44(7), 573–578. https://doi.org/10.1002/eat.20868
Haedt-Matt, A. A., Zalta, A. K., Forbush, K. T., & Keel, P. K. (2012). Experimental evidence that changes in mood cause changes in body dissatisfaction among undergraduate women. Body Image, 9(2), 216–220. https://doi.org/10.1016/j.bodyim.2011.11.004
Hamaker, E. (2012). Why researchers should think “within-person”: A paradigmatic rationale. Handbook of Research Methods for Studying Daily Life, 43–61. https://doi.org/10.1007/978-3-531-93094-7
Hartigan, A., & Wong, M. A. (1979). A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. https://doi.org/10.2307/2346830
Heron, K. E., & Smyth, J. M. (2010). Ecological momentary interventions: Incorporating mobile technology into psychosocial and health behaviour treatments. British Journal of Health Psychology, 15(1), 1–39. https://doi.org/10.1348/135910709X466063
Hildebrand, M., Van Hees, V. T., Hansen, B. H., & Ekelund, U. (2014). Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/MSS.0000000000000289
Hoogendoorn, M., & Funk, B. (2017). Machine learning for the quantified self: On the art of learning from sensory data. Springer International Publishing. Retrieved from https://books.google.nl/books?id=WZs3DwAAQBAJ
Horton, N. J., & Kleinman, K. (2015). Using R and RStudio for data management, statistical analysis, and graphics. Chapman; Hall/CRC.
Hufford, M. R., Shields, A. L., Shiffman, S., Paty, J., & Balabanis, M. (2002). Reactivity to ecological momentary assessment: An example using undergraduate problem drinkers. Psychology of Addictive Behaviors, 16(3), 205–211. https://doi.org/10.1037//0893-164X.16.3.205
Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. https://doi.org/10.1037/0022-006X.59.1.12
Jongeneel, A., Scheffers, D., Tromp, N., Nuij, C., Delespaul, P., Riper, H., … Van den Berg, D. (2018). Reducing distress and improving social functioning in daily life in people with auditory verbal hallucinations: Study protocol for the ‘temstem’randomised controlled trial. BMJ Open, 8(3), e020537. https://doi.org/10.1136/bmjopen-2017-020537
Karatsoreos, I. N. (2014). Links between Circadian Rhythms and Psychiatric Disease. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2014.00162
Kemmeren, L., Van Schaik, D., Riper, H., Kleiboer, A., Bosmans, J. E., & Smit, J. H. (2016). Effectiveness of blended depression treatment for adults in specialised mental healthcare: Study protocol for a randomised controlled trial. BMC Psychiatry, 16(1), 113. https://doi.org/10.1186/s12888-016-0818-5
Kim, Y., White, T., Wijndaele, K., Sharp, S. J., Wareham, N. J., & Brage, S. (2017). Adiposity and grip strength as long-Term predictors of objectively measured physical activity in 93 015 adults: The UK Biobank study. International Journal of Obesity. https://doi.org/10.1038/ijo.2017.122
Kirchner, T. R., & Shiffman, S. (2013). Ecological Momentary Assessment. In The wiley-blackwell handbook of addiction psychopharmacology (pp. 541–565). Wiley-Blackwell. https://doi.org/10.1002/9781118384404.ch20
Kirchner, T. R., & Shiffman, S. (2016). Spatio-temporal determinants of mental health and well-being: Advances in geographically-explicit ecological momentary assessment (gema). Social Psychiatry and Psychiatric Epidemiology, 51(9), 1211–1223. https://doi.org/10.1007/s00127-016-1277-5
Kleiboer, A., Smit, J., Bosmans, J., Ruwaard, J., Andersson, G., Topooco, N., … Riper, H. (2016). European COMPARative Effectiveness research on blended Depression treatment versus treatment-as-usual (E-COMPARED): Study protocol for a randomized controlled, non-inferiority trial in eight European countries. Trials, 17(1). https://doi.org/10.1186/s13063-016-1511-1
Kossakowski, J. J., Groot, P. C., Haslbeck, J. M. B., Borsboom, D., & Wichers, M. (2017). Data from ‘critical slowing down as a personalized early warning signal for depression’. Journal of Open Psychology Data, 5(1). https://doi.org/10.5334/jopd.29
Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. Journal of Affective Disorders, 114(1-3), 163–173. https://doi.org/10.1016/j.jad.2008.06.026
Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling method. In H. T. Reis (Ed.), Naturalistic approaches to studying social interaction (pp. 41–56). San Francisco: Jossey-Bass Inc Pub.
Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science. https://doi.org/10.1007/BF00648343
Marszalek, J., Morgulec-Adamowicz, N., Rutkowska, I., Kosmol, A., Marszalek, J., Morgulec-Adamowicz, N., … Kosmol, A. (2014). Using ecological momentary assessment to evaluate current physical activity. BioMed Research International, 2014, e915172. https://doi.org/10.1155/2014/915172
Mehl, M. R., & Conner, T. S. (Eds.). (2012). Handbook of research methods for studying daily life. New York, NY, US: Guilford Press.
Mikus, A., Hoogendoorn, M., Rocha, A., Gama, J., Ruwaard, J., & Riper, H. (2018). Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data. Internet Interventions, 12, 105–110. https://doi.org/10.1016/j.invent.2017.10.001
Moore, R. C., Depp, C. A., Wetherell, J. L., & Lenze, E. J. (2016). Ecological momentary assessment versus standard assessment instruments for measuring mindfulness, depressed mood, and anxiety among older adults. Journal of Psychiatric Research, 75, 116–123. https://doi.org/10.1016/j.jpsychires.2016.01.011
Myin-Germeys, I., Klippel, A., Steinhart, H., & Reininghaus, U. (2016). Ecological momentary interventions in psychiatry. Current Opinion in Psychiatry, 29(4), 258–263. https://doi.org/10.1097/YCO.0000000000000255
Nuij, C., Van Ballegooijen, W., Ruwaard, J., de Beurs, D., Mokkenstorm, J., Duijn, E. van, … Kerkhof, A. (2018). Smartphone-based safety planning and self-monitoring for suicidal patients: Rationale and study protocol of the CASPAR (Continuous Assessment for Suicide Prevention And Research) study. Internet Interventions, 13, 16–23. https://doi.org/10.1016/J.INVENT.2018.04.005
Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of Neuroengineering and Rehabilitation, 9(1), 21. https://doi.org/10.1186/1743-0003-9-21
Penninx, B. W. J. H., Beekman, A. T. F., Smit, J. H., Zitman, F. G., Nolen, W. A., Spinhoven, P., … NESDA Research Consortium. (2008). The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. International Journal of Methods in Psychiatric Research, 17(3), 121–140. https://doi.org/10.1002/mpr.256
Piasecki, T. M., Hufford, M. R., Solhan, M., & Trull, T. J. (2007). Assessing clients in their natural environments with electronic diaries: Rationale, benefits, limitations, and barriers. Psychological Assessment, 19(1), 25–43. https://doi.org/10.1037/1040-3590.19.1.25
Pinheiro, J., & Bates, D. M. (2000). Mixed effects models in S and S-Plus. New York: Springer Verlag. https://doi.org/10.1198/tech.2001.s574
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2018). nlme: Linear and nonlinear mixed effects models. Retrieved from https://CRAN.R-project.org/package=nlme
Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), 715–734. https://doi.org/http://dx.doi.org/10.1017/S0954579405050340
Pot-Kolder, R. M., Geraets, C. N., Veling, W., Van Beilen, M., Staring, A. B., Gijsman, H. J., … Van der Gaag, M. (2018). Virtual-reality-based cognitive behavioural therapy versus waiting list control for paranoid ideation and social avoidance in patients with psychotic disorders: A single-blind randomised controlled trial. The Lancet Psychiatry, 5(3), 217–226. https://doi.org/10.1016/S2215-0366(18)30053-1
Pot-Kolder, R. M., Veling, W., Geraets, C., & Van der Gaag, M. (2016). Effect of virtual reality exposure therapy on social participation in people with a psychotic disorder (VRETp): Study protocol for a randomized controlled trial. Trials, 17(1), 25. https://doi.org/10.1016/S2215-0366(18)30053-1
Rocha, A., Camacho, R., Ruwaard, J., & Riper, H. (2018). Using multi-relational data mining to discriminate blended therapy efficiency on patients based on log data. Internet Interventions, 12, 176–180. https://doi.org/10.1016/j.invent.2018.03.003
Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: Daily temporal patterns of human chronotypes. Journal of Biological Rhythms, 18(1), 80–90. https://doi.org/10.1177/0748730402239679
Rowlands, A. V., Yates, T., Davies, M., Khunti, K., & Edwardson, C. L. (2016). Raw Accelerometer Data Analysis with GGIR R-package: Does Accelerometer Brand Matter? Medicine and Science in Sports and Exercise. https://doi.org/10.1249/MSS.0000000000000978
Ruf, T. (1999). The lomb-scargle periodogram in biological rhythm research: Analysis of incomplete and unequally spaced time-series. Biological Rhythm Research, 30, 178–201. https://doi.org/10.1076/brhm.30.2.178.1422
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161. https://doi.org/10.1037/h0077714
Saeb, S., Lattie, E. G., Kording, K. P., & Mohr, D. C. (2017). Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety. JMIR mHealth and uHealth. https://doi.org/10.2196/mhealth.7297
Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden, M. E., Kording, K. P., & Mohr, D. C. (2015). Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. Journal of Medical Internet Research, 17(7). https://doi.org/10.2196/jmir.4273
Sander, D., & Scherer, K. (2009). Oxford companion to emotion and the affective sciences. Oxford University Press.
Saunders, K., Palmius, N., Vos, M. de, Bilderbeck, A., Geddes, J., & Goodwin, G. (2016). Depression detection in bipolar disorder using geolocation data. Bipolar Disorders. https://doi.org/10.1109/TBME.2016.2611862
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., … Sugihara, G. (2009). Early-warning signals for critical transitions. https://doi.org/10.1038/nature08227
Schueller, S. M., Aguilera, A., & Mohr, D. C. (2017). Ecological momentary interventions for depression and anxiety. Depression and Anxiety, 34(6), 540–545. https://doi.org/10.1002/da.22649
Schuurman, N. K., Houtveen, J. H., & Hamaker, E. (2015). Incorporating measurement error in n= 1 psychological autoregressive modeling. Frontiers in Psychology, 6, 1038. https://doi.org/10.3389/fpsyg.2015.01038
Serre, F., Fatseas, M., Swendsen, J., & Auriacombe, M. (2015). Ecological momentary assessment in the investigation of craving and substance use in daily life: A systematic review. https://doi.org/10.1016/j.drugalcdep.2014.12.024
Sharar, S. R., Alamdari, A., Hoffer, C., Hoffman, H. G., Jensen, M. P., & Patterson, D. R. (2016). Circumplex model of affect: A measure of pleasure and arousal during virtual reality distraction analgesia. Games for Health Journal, 5(3), 197–202. https://doi.org/10.1089/g4h.2015.0046
Shiffman, S. (2009). Ecological momentary assessment (EMA) in studies of substance use. Psychological Assessment, 21(4), 486–497. https://doi.org/10.1037/a0017074
Shiffman, S., Stone, A. A., Hufford, M. R., Rev, A., Psychol, C., Shiffman, S., … Hufford, M. R. (2008). Ecological Momentary Assessment. Annual Review of Clinical Psychology, 4(1), 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
Slofstra, C., Klein, N. S., Nauta, M. H., Wichers, M., Batalas, N., & Bockting, C. L. (2017). Imagine your mood: Study design and protocol of a randomized controlled micro-trial using app-based experience sampling methodology to explore processes of change during relapse prevention interventions for recurrent depression. Contemporary Clinical Trials Communications, 7, 172–178. https://doi.org/10.1016/j.conctc.2017.07.003
Smyth, J. M., & Stone, A. A. (2003). Ecological momentary assessment research in behavioral medicine. Journal of Happiness Studies, 4(1), 35–52. https://doi.org/10.1023/A:1023657221954
Starr, L. R., & Davila, J. (2012). Temporal patterns of anxious and depressed mood in generalized anxiety disorder: A daily diary study. Behaviour Research and Therapy. https://doi.org/10.1016/j.brat.2011.11.005
Stone, A. A., & Shiffman, S. (2002). Capturing momentary, self-report data: A proposal for reporting guidelines. Annals of Behavioral Medicine, 24(3), 236–243. https://doi.org/10.1207/S15324796ABM2403_09
Swendsen, J. (2016). Contributions of mobile technologies to addiction research. Dialogues in Clinical Neuroscience, 18(2), 213. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969708/
Tahmasian, M., Khazaie, H., Golshani, S., & Avis, K. T. (2013). Clinical application of actigraphy in psychotic disorders: A systematic review. Current Psychiatry Reports. https://doi.org/10.1007/s11920-013-0359-2
Te Lindert, B. H., Itzhacki, J., Van der Meijden, W. P., Kringelbach, M. L., Mendoza, J., & Van Someren, E. (2018). Bright environmental light ameliorates deficient subjective ‘liking’in insomnia: An experience sampling study. Sleep, 41(4), 1–13. https://doi.org/10.1093/sleep/zsy022
Telford, C., McCarthy-Jones, S., Corcoran, R., & Rowse, G. (2012). Experience sampling methodology studies of depression: The state of the art. Psychological Medicine, 42(6), 1119–1129. https://doi.org/10.1017/S0033291711002200
Tomkiewicz, S. M., Fuller, M. R., Kie, J. G., & Bates, K. K. (2010). Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1550), 2163–2176. https://doi.org/10.1098/rstb.2010.0090
Twisk, J. (2006). Applied multilevel analysis: A practical guide. Cambridge University Press.
Twisk, J. (2013). Applied longitudinal data analysis for epidemiology: A practical guide (2nd revised edition). Cambridge University Press.
Van Ballegooijen, W., Ruwaard, J., Karyotaki, E., Ebert, D. D., Smit, J. H., & Riper, H. (2016). Reactivity to smartphone-based ecological momentary assessment of depressive symptoms (MoodMonitor): Protocol of a randomised controlled trial. BMC Psychiatry, 16(1), 359. https://doi.org/10.1186/s12888-016-1065-5
Van Breda, W., Bremer, V., Becker, D., Hoogendoorn, M., Funk, B., Ruwaard, J., & Riper, H. (2018). Predicting therapy success for treatment as usual and blended treatment in the domain of depression. Internet Interventions. https://doi.org/10.1016/j.invent.2017.08.003
Van de Leemput, I. A., Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., … Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87–92. https://doi.org/10.1073/pnas.1312114110
Van de Ven, P., O’Brien, H., Henriques, R., Klein, M., Msetfi, R., Nelson, J., … Riper, H. (2017). ULTEMAT: A mobile framework for smart ecological momentary assessments and interventions. Internet Interventions, 9, 74–81. https://doi.org/10.1016/j.invent.2017.07.001
Van der Krieke, L., Blaauw, F. J., Emerencia, A. C., Schenk, H. M., Slaets, J. P., Bos, E. H., … Jeronimus, B. F. (2017). Temporal dynamics of health and well-being: A crowdsourcing approach to momentary assessments and automated generation of personalized feedback. Psychosomatic Medicine. https://doi.org/10.1097/PSY.0000000000000378
Van der Krieke, L., Emerencia, A. C., Bos, H. E., Rosmalen, G. J., Riese, H., Aiello, M., … de Jonge, P. (2015). Ecological momentary assessments and automated time series analysis to promote tailored health care: A proof-of-principle study. JMIR Research Protocols, 4(3), e100. https://doi.org/10.2196/resprot.4000
Van der Krieke, L., Jeronimus, B. F., Blaauw, F. J., Wanders, R. B., Emerencia, A. C., Schenk, H. M., … De Jonge, P. (2016). HowNutsAreTheDutch (HoeGekIsNL): A crowdsourcing study of mental symptoms and strengths. International Journal of Methods in Psychiatric Research. https://doi.org/10.1002/mpr.1495
Van der Meijden, W. P., Van Someren, J. L., Te Lindert, B. H., Bruijel, J., Van Oosterhout, F., Coppens, J. E., … Van Someren, E. (2016). Individual differences in sleep timing relate to melanopsin-based phototransduction in healthy adolescents and young adults. Sleep, 39(6), 1305–1310. https://doi.org/10.5665/sleep.5858
Van Hees, V. T., Fang, Z., Langford, J., Assah, F., Mohammad, A., Silva, I. C. da, … Brage, S. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. Journal of Applied Physiology, 117(7), 738–744. https://doi.org/10.1152/japplphysiol.00421.2014
Van Hees, V. T., Fang, Z., Zhao, J. H., Heywood, J., Mirkes, E., Sabia, S., & Migueles, J. H. (2018). GGIR: Raw accelerometer data analysis. https://doi.org/10.5281/zenodo.1051064
Van Hees, V. T., Sabia, S., Anderson, K. N., Denton, S. J., Oliver, J., Catt, M., … Singh-Manoux, A. (2015). A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One, 10(11). https://doi.org/10.1371/journal.pone.0142533
Van Rijsbergen, G. D., Bockting, C. L. H., Berking, M., Koeter, M. W. J., & Schene, A. H. (2012). Can a one-item mood scale do the trick? Predicting relapse over 5-years in recurrent depression. Plos One, 7(10), 1–5. https://doi.org/10.1371/journal.pone.0046796
Van Rijsbergen, G. D., Burger, H., Hollon, S. D., Elgersma, H. J., Kok, G. D., Dekker, J., … Bockting, C. L. (2014). How do you feel? Detection of recurrent Major Depressive Disorder using a single-item screening tool. Psychiatry Research, 220(1-2), 287–293. https://doi.org/10.1016/j.psychres.2014.06.052
Van Someren, E. (2000). Circadian rhythms and sleep in human aging. Chronobiology International. https://doi.org/10.1081/CBI-100101046
Van Someren, E. (2011). Chapter 4 - Actigraphic monitoring of sleep and circadian rhythms. In P. Montagna & S. Chokroverty (Eds.), Sleep disorders part i (Vol. 98, pp. 55–63). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-52006-7.00004-6
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth). New York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4
Versluis, A., Verkuil, B., Spinhoven, P., Van der Ploeg, M. M., & Brosschot, J. F. (2016). Changing mental health and positive psychological well-being using ecological momentary interventions: A systematic review and meta-analysis. Journal of Medical Internet Research, 18(6). https://doi.org/10.2196/jmir.5642
Walz, L. C., Nauta, M. H., & Aan het Rot, M. (2014). Experience sampling and ecological momentary assessment for studying the daily lives of patients with anxiety disorders: A systematic review. Journal of Anxiety Disorders, 28(8), 925–937. https://doi.org/10.1016/j.janxdis.2014.09.022
Warmerdam, L., Riper, H., Klein, M. C., Van de Ven, P., Rocha, A., Henriques, M. R., … Cuijpers, P. (2012). Innovative ict solutions to improve treatment outcomes for depression: The ICT4Depression project. Annual Review of Cybertherapy and Telemedicine, 181(1), 339–343. https://doi.org/10.3233/978-1-61499-121-2-339
Watson, D., & Clark, L. A. (1994). The PANAS-X : Manual for the Positive and Negative Affect Schedule - expanded Form. Iowa: University of Iowa. Retrieved from https://pdfs.semanticscholar.org/9e15/83dd26e0741e2bf74112405e97d948170128.pdf
Watson, D., & Clark, L. A. (1997). Measurement and mismeasurement of mood: Recurrent and emergent issues. https://doi.org/10.1207/s15327752jpa6802_4
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219. https://doi.org/10.1037/0033-2909.98.2.219
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of Positive and Negative Affect : The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
Wenze, S. J., & Miller, I. W. (2010). Use of ecological momentary assessment in mood disorders research. Clinical Psychology Review, 30(6), 794–804. https://doi.org/10.1016/j.cpr.2010.06.007
Wichers, M., Groot, P. C., Psychosystems, ESM, & EWS. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114–116. https://doi.org/10.1159/000441458
Wichers, M., Peeters, F., Rutten, B. P. F., Jacobs, N., Derom, C., Thiery, E., … Van Os, J. (2012). A time-lagged momentary assessment study on daily life physical activity and affect. Health Psychology, 31(2), 135–144. https://doi.org/10.1037/a0025688
Wichers, M., Simons, C. J. P., Kramer, I. M. A., Hartmann, J. A., Lothmann, C., Myin-Germeys, I., … Van Os, J. (2011). Momentary assessment technology as a tool to help patients with depression help themselves. Acta Psychiatrica Scandinavica, 124(4), 262–272. https://doi.org/10.1111/j.1600-0447.2011.01749.x
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. “ O’Reilly Media, Inc.”
Wickham, H., & Miller, E. (2018). Haven: Import and export ’SPSS’, ’Stata’ and ’SAS’ files. Retrieved from https://CRAN.R-project.org/package=haven
Wickham, H., François, R., Henry, L., & Müller, K. (2018). Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
Wikipedia. (2018). Stationary process — Wikipedia, The free encyclopedia. http://en.wikipedia.org/w/index.php?title=Stationary%20process&oldid=866157327.
Wilkinson, L. (2006). The grammar of graphics. Springer Science & Business Media.
Willemsen, G. H., De Geus, E., Klaver, C. H., Van Doornen, L. J., & Carroll, D. (1996). Ambulatory monitoring of the impedance cardiogram. Psychophysiology. https://doi.org/10.1111/j.1469-8986.1996.tb02122.x
Xie, Y. (2016). Bookdown: Authoring books and technical documents with R markdown. Boca Raton, Florida: Chapman; Hall/CRC. Retrieved from https://github.com/rstudio/bookdown